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Abstract

Multi-agent Reinforcement Learning (MARL) problems of-
ten require cooperation among agents in order to solve a task.
Centralization and decentralization are two approaches used
for cooperation in MARL. While fully decentralized meth-
ods are prone to converge to suboptimal solutions due to
partial observability and nonstationarity, the methods involv-
ing centralization suffer from scalability limitations and lazy
agent problem. Centralized training decentralized execution
paradigm brings out the best of these two approaches; how-
ever, centralized training still has an upper limit of scalabil-
ity not only for acquired coordination performance but also
for model size and training time. In this work, we adopt the
centralized training with decentralized execution paradigm
and investigate the generalization and transfer capacity of the
trained models across variable number of agents. This ca-
pacity is assessed by training variable number of agents in
a specific MARL problem and then performing greedy eval-
uations with variable number of agents for each training con-
figuration. Thus, we analyze the evaluation performance for
each combination of agent count for training versus evalua-
tion. We perform experimental evaluations on predator prey
and traffic junction environments and demonstrate that it is
possible to obtain similar or higher evaluation performance
by training with less agents. We conclude that optimal num-
ber of agents to perform training may differ from the target
number of agents and argue that transfer across large number
of agents can be a more efficient solution to scaling up than
directly increasing number of agents during training.

Introduction
A significant amount of problems in Multi-agent Reinforce-
ment Learning (MARL) require agents to achieve a com-
mon goal, which makes learning to cooperate crucial. Nev-
ertheless, as the number agents that need to cooperate in-
creases, the difficulty of achieving optimal cooperation also
increases. In order to create large-scale MARL applications,
it is critical to find high performance solutions that facilitate
scalability with low computational costs. As a step towards
this goal, we pose the question: can learned policies be trans-
ferred across systems with higher number of agents without
any extra training necessary and loss of performance?
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Centralization and decentralization are two main
paradigms in cooperative MARL. Centralization aims to
reach cooperation naturally by transforming the multi-agent
problem into a single agent problem by aggregating the local
observations of agents to form a global state and inferring
actions of agents through the global state. However, besides
its inherent problems, full centralization with conventional
function approximators does not allow execution on systems
with different number of agents than the number of agents
used in training, which we call transfer across variable
number of agents. Nevertheless, use of graph convolutional
networks (Kipf and Welling 2017), (Veličković et al. 2018)
in a centralized training centralized execution paradigm as
in (Li et al. 2020) allows transfer to systems with variable
number of agents.

Centralized training decentralized execution paradigm
makes transfer across variable number of agents straightfor-
ward, since the obtained policy infers actions from local ob-
servations and shares parameters with every agent in the sys-
tem. Apart from that advantage, the overhead from increas-
ing number of agents during execution is relatively small
with respect to centralized execution. Therefore, we adopt
centralized training decentralized execution as our main ap-
proach. Furthermore, we base our approach on graph convo-
lutional MARL methods such as in (Jiang et al. 2020), (Li
et al. 2020) that represent the locality and strength of agent
interactions and form an implicit coordination graph.

In order to evaluate the generalization and transfer capac-
ity across variable number of agents, we perform training in
predator prey and traffic junction environments with vary-
ing number of agents starting from two-three agents to the
number of agents that the environment’s capacity allows.
We then perform greedy evaluations on the trained models
with varying number of agents. We analyze the performance
of evaluation results in terms of generalization and transfer
capacity for each combination of agent count for training
versus evaluation. The experiment results demonstrate the
possibility of obtaining similar or higher evaluation perfor-
mance by training with less agents. We argue that training
with a smaller number of agents and then transferring the
model to high-scale configurations can be a more efficient
solution than training with the high-scale configurations for
agent count while preserving performance.
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Related Work
Centralization and decentralization are central approaches
in cooperative MARL. Centralization aims to reach co-
operation naturally by transforming the multi-agent prob-
lem into a single agent problem. However, (Sunehag et al.
2017) demonstrate that centralization leads to inefficient
policies due to the lazy agent problem where some agents
refrain from learning while an agent learns successfully be-
cause those agents’ exploratory behaviour would damage
the agent’s learning performance. Furthermore, achieving
centralization is not practically possible for some tasks due
to impossibility or impracticability of being informed of
other agents’ observations. The alternative approach, and the
mandatory approach when centralization is not possible, is
decentralization where each agent is an independent learner.
However, (Sunehag et al. 2017) assert that nonstationarity
introduces spurious reward signals that an agent can not de-
termine if the signal is the outcome of its own action or other
agents’ actions, thus leading to failure. In order to mitigate
these drawbacks, it is a common approach to use the central-
ized training decentralized execution paradigm. Counterfac-
tual Multi-Agent Policy Gradients (COMA) is a classic ex-
ample of this paradigm which is an actor critic algorithm
with a centralized actor and a decentralized critic (Foerster
et al. 2017). We also use an actor-critic algorithm, Proxi-
mal Policy Optimization (PPO), as our base algorithm. PPO
(Schulman et al. 2017) is a policy gradient method that op-
timizes a surrogate objective function that enables the al-
gorithm to learn while limiting the extent the policy may
change in each iteration.

Instead of adopting either centralized or decentralized ap-
proach, (Guestrin, Koller, and Parr 2002) propose formulat-
ing the cooperation problem by forming coordination graph
and transforming this graph into a Dynamic Bayesian Net-
work (DBN) for factorized representation, which allows fac-
toring value functions in order to enable agents to coordi-
nate by message passing and solved by linear programming.
(Böhmer, Kurin, and Whiteson 2020) applies coordination
graph approach to deep neural networks and approximate
pay-off functions using them while maximizing value func-
tion by message passing.

Considering the convenience of representing multi-agent
dynamics as a graph, processing graph structured data using
deep neural networks is of importance. (Kipf and Welling
2017) propose a layer-wise propagation rule for deep neural
networks processing graph structured data. (Veličković et al.
2018) introduce Graph Attention Networks which improve
upon previous methods by using a masked self-attention
layer that weights the impact of each neighbor accordingly
during aggregation. (Jiang et al. 2020) propose using graph
convolution with relation kernels in MARL to capture agent
interplay that adapts to underlying dynamic graph of the en-
vironment in order to promote cooperation. (Li et al. 2020)
suggest using self attention to obtain the coordination graph
structure once and then using it for graph convolution in
each pass to form an implicit deep coordination graph.

Our work adopts centralized training decentralized exe-
cution paradigm that uses PPO. We use graph convolution
with self attention to process graph structured data and en-

Figure 1: Critic Network - oi denotes observation of agent i,
Ei denotes embedding of the observation of agent i, Hi de-
notes output of agent i from the first graph convolution, H ′

i
denotes output of agent i from the second graph convolution,
vi denotes the corresponding value of agent i

courage cooperation. Although the aforementioned related
work also aims to promote cooperation, they mainly focus
on achieving it for a fixed number of agents. Our contri-
bution is checking the limits of cooperation that is learned
for a fixed number of agents across different number of
agents, and demonstrating that increasing agent count be-
yond a threshold in training is not necessary for achieving
cooperation.

Methodology

Algorithm and Network Architecture

We adopt the Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) framework as formulated
in (Oliehoek 2012) for this MARL problem. We use PPO
with clipped surrogate objective as used and parametrized
in (Li et al. 2020). We use a simple Multi-Layer Perceptron
(MLP) that takes single local observations and outputs ac-
tion probabilities for each agent.

The network architecture of centralized critic is given in
Figure 1. The architecture consists of one MLP for extract-
ing embeddings of decentralized observations. Then these
embeddings are forwarded to two layers of graph convolu-
tional layers with self attention which use message passing
to aggregate these local observations properly. Then both
embeddings and outputs of graph convolutional layers are
forwarded to Critic MLP module which first aggregates in-
formation using sum operation and forwards it through MLP.

The network architecture of graph convolutional layer
is provided in Figure 2. This layer passes each of its in-
puts through self attention, then it forwards attention out-
puts and residuals to a one layer neural network which pro-
duces graph convolutional layer outputs. The used self at-
tention formulation and graph convolution outputs are in-
spired from (Jiang et al. 2020) and formulated in Equation
1 and Equation 2. In these equations, h denotes input to the
graph convolutional layer, h

′
denotes output of the graph

convolutional layer, dk denotes the scaling factor, σ denotes
one layer feed forward network, and WQ, WK , WV denote
weight matrices of query, key, and value vectors.



Figure 2: Graph Convolutional Layer - Ei denotes the input
of agent i to the graph convolution, Hi denotes the output of
agent from the graph convolution

Self-Attention(h) = softmax
(
WQh(WKh)

T

√
dk

)
WV h

(1)

h′ = σ ( concatenate [Self-Attention(h), h]) (2)

Generalization and Transfer Capacity Evaluation
In order to evaluate the generalization and transfer capacity
of the agents, we determine a range of agent count that starts
from 2-3 and reaches to the capacity of the environment in
question. Since we use decentralized execution that shares
the actor with all agents, transfer is achieved simply by us-
ing this actor for all the agents with their local observations.
We perform training in our chosen MARL environments for
the whole range of agent count with 3 different seeds. We
then determine a range of agent count for evaluation. The
evaluation agent count range coincides with the training
agent count range except for some additional sample
points we may choose from inside the training range. The
reason for choosing additional sample points from inside
the training range is to make sure that we can answer the
question: would training a model with higher agent count
give superior results? Each evaluation process takes 100
evaluations averaged over with 3 different seeds in the
environment, thus every combination contains 9 different
evaluation results. At the end, evaluations of models with
the same agent count for training and same agent count
for evaluation are averaged and their standard deviations
are calculated. For analysis, evaluation results are grouped
according to the agent count during evaluation, in order to
answer the question: is training n agents the optimal choice
for applications where n or higher number of agents will
be necessary, or is it possible to train with fewer number
of agents and transfer the model to applications with
higher number of agents necessary with similar or better
performance?

input : number of training epochs (ep), train agent
count (tac), eval agent count (eac), train
seeds, evaluation seeds

output: A
// A: 2d array with shape eac, tac
for each n in tac do

for each seed in train seeds do
for epoch← 1 to to ep do

Train agentn for tac n
end
save agentn with train seed: seed and tac: n

end
end
for each neval in eac do

for each ntrain tac do
resulteval ← 0
for each agent in saved agents with train

agent count = ntrain do
for each seed in evaluation seeds do

resultavg ← evaluate 100 times
resulteval ← resulteval + resultavg

end
end
resulteval ← resulteval / (# of train seeds ×
# of evaluation seeds)
A[neval][ntrain]← resulteval

end
end

Algorithm 1: Transfer Capacity Evaluation

Experiments

Predator Prey
Predator Prey environment consists of preys and predators
where predators get rewarded by hunting preys, which move
by hard coded action descriptions and random moves as de-
scribed in (Li et al. 2020). As applied by (Li et al. 2020), we
also penalize single agent capture attempts by -0.5 penalty
in order to compel predators to collaborate. We use preda-
tor prey environment with a grid size of 20 × 20 in order to
create capacity for 80 preys and 80 predators. We determine
the training range and evaluation range of agent count as: 2,
5, 10, 20, 50, 80. The mean evaluation rewards are provided
in Table 1 and Table 2.

Results of the experimental evaluation in predator prey

2 5 10
2 −2.01± 1.56 30.30± 1.95 86.48± 2.69
5 +4.62± 1.46 41.98± 0.77 94.60± 0.78
10 −2.93± 1.10 39.71± 1.56 95.35± 0.21
20 −11.75± 2.09 22.05± 6.95 84.60± 7.86
50 −16.52± 1.68 6.68± 4.03 63.39± 4.61
80 −13.96± 1.00 11.17± 4.29 62.57± 7.94

Table 1: Mean of Total Rewards for Predator Prey
(Columns denote the number of agents in evaluation while
rows the denote number of agents in training.)



20 50 80
2 192.38± 1.88 496.58± 0.56 797.30± 0.59
5 196.37± 0.58 497.96± 0.40 798.07± 0.82
10 196.95± 0.07 498.18± 0.37 798.28± 0.76
20 194.08± 2.48 496.80± 0.47 794.74± 2.30
50 182.00± 2.86 494.68± 1.00 795.90± 1.45
80 168.27± 8.47 484.42± 4.33 789.59± 2.09

Table 2: Mean of Total Rewards for Predator Prey
(Columns denote the number of agents in evaluation while
rows the denote number of agents in training.)

Figure 3: 5 Agents Evaluation in Predator Prey

environment, as provided in Table 1, Table 2, and Figure
3, demonstrate that training in few number of agents such
as 2-5 can get evaluation results that surpass the evaluation
results of models that are trained with large number of agents
such as 50-80. It can be deduced that models trained with
few number of agents have high generalization and transfer
capacity for execution with high number of agents. However,
our analysis shows us that the reverse is not true. The models
that are trained with large number of agents such as 50-80
have very low returns for the evaluation cases where there
are 2-5 agents in the environment. Hence, it can be inferred
from the results that for a high performance application of
predator prey environment, choosing number of agents to
train from the range [5, 10] would be the better choice.

Traffic Junction
Traffic Junction environment consists of predetermined
routes and junctions where cars need to reach their des-
tination point without collision as described in (Li et al.
2020). We use traffic junction environment with the diffi-
culty ’hard’. Other parameters of the environment such as di-
mension, maximum agent add rate and minimum add agent
rate are chosen compatibly with the environment difficulty
according to the configurations proposed by (Singh, Jain,
and Sukhbaatar 2018). Because of environment dimension
and agent add rate setting, the capacity of the environment
allows for approximately 20 agents in a single time step.
Thus, we determine the training range and evaluation range
of agent count as: 3, 5, 10, 15, 20. The mean evaluation suc-
cess rates are provided in Table 3.

Results of the experimental evaluation in traffic junction
environment, as provided in Table 3 and Figure 4, demon-
strate that training with few number of agents such as 3-5

3 5 10 15 20
3 0.99± 0 0.92± 0.04 0.56± 0.10 0.26± 0.14 0.23± 0.15
5 0.99± 0 0.97± 0.01 0.77± 0.09 0.58± 0.16 0.58± 0.18
10 1.00± 0 0.99± 0.00 0.95± 0.01 0.84± 0.07 0.73± 0.09
15 1.00± 0 0.99± 0.01 0.94± 0.01 0.85± 0.03 0.79± 0.05
20 0.99± 0 0.99± 0.00 0.90± 0.02 0.83± 0.04 0.79± 0.03

Table 3: Mean of Success Rates for Traffic Junction
(Columns denote the number of agents in evaluation while
rows denote the number of agents in training.)

Figure 4: 20 Agents Evaluation in Traffic Junction

gets evaluation results with much lower success rate com-
pared to the evaluation results of models that are trained
with large number of agents such as 15-20. It can be de-
duced that models trained with few number of agents can
not sufficiently transfer for execution with high number of
agents. The models that are trained with 15-20 agents have
very high success rate for the evaluation cases where there
are 3-5 agents in the environment. Nevertheless, the evalu-
ation results with 15 and 20 agents demonstrate that train-
ing with 15 agents gives better results than training with 20
agents. Thus, we infer that an environment can have a sweet
spot for the number of agents to train. We also infer that
environment dynamics play a key role in the generalization
and transfer capacity of training.

Discussion
In this work, we adopted the centralized training decentral-
ized execution paradigm and investigated the generalization
and transfer capacity of the trained models across variable
number of agents. We assessed it by training variable num-
ber of agents in a specific MARL problem and then per-
forming greedy evaluations with variable number of agents
for each training configuration. We deduced that an envi-
ronment can have a sweet spot for the number of agents
to train in terms of evaluation performance and that envi-
ronment dynamics play a key role in the generalization and
transfer capacity of training. We saw that training with fewer
number of agents can be a more efficient option for execu-
tion in large number of agents. We conclude that optimal
number of agents to perform training may differ from the
target number of agents and put forward that transfer across
large number of agents can be a more efficient solution to
scaling up than directly increasing number of agents during
training.
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