Evaluating Generalization and Transfer Capacity of Multi-Agent Reinforcement Learning Across Variable Number of Agents Bengisu Güresti, Nazım Kemal Üre March 23, 2021 # Outline Introduction Methods # Table of Contents Introduction 2 Methods #### Overview ### Cooperative Multi-Agent Reinforcement Learning - Common goal - Global reward - Local observations Issues: Non-stationarity, partial observability, restricted communication Centralized Training Decentralized Execution Paradigm (CTDE) #### Overview # Centralized Training Decentralized Execution Number of agents in training is fixed! In real world scenarios: - Number of agents vary - Unguaranteed communication necessitate decentralized policies # Motivation and Approach Environment with Variable Number of Agents As number of agents \uparrow scalability becomes an issue. #### We investigate: - Can learned decentralized policy work for settings with more / less agents? - Are resulting policies good enough for use in systems with many more agents? #### We show: - Environment is key and a sweet spot exists for the optimal number of agents to train, - Optimal agent count to train is different than target. - Transfer across large number of agents can be a more efficient solution to scaling up in some environments # Table of Contents Introduction Methods # Algorithm and Network Architecture #### Decentralized Policy Network: #### Multilayer Perceptrone Algorithm: PPO (Proximal Policy Optimization) [1] $$r_t(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}$$ $$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$ #### Centralized Critic Network GC Layer: Graph Convolutional Layer with Self Attention Modules o_i : observation of agent i - single time-step partial observation # Algorithm and Network Architecture # Graph Convolutional Layer with Self Attention Self attention is used - only 1 attention head is used. #### Graph Attention Networks [2] #### **Evaluation Method** - Agent capacity of environment is determined. Number of agents to train and evaluate system performance is determined. - Por each determined training number, system is trained at that fixed count until performance converges. - For each trained model, system is evaluated for all determined agent counts - Results are grouped per number of agents in evaluation. Performances of training for each agent count are analyzed and compared. # Table of Contents Introduction 2 Methods # Predator Prey Environment Figure 1: Predator Prey Environment [3] example grid size: 10×10 - Blue: Predators Red: Preys - Preys act → Predetermined rules + randomness - Used grid size: 20×20 - Uncoordinated captures penalized - Max agent capacity determined: 80 predators 80 preys - Train and Evaluation agent counts determined: #### Traffic Junction Environment Figure 2: Traffic Junction Environment [3] mode: hard - Environment mode: hard - 4 junctions - Goal: reach destination without accident - Max agent capacity determined : 20 agents - Train and Evaluation agent counts determined: # Predator Prey Environment Evaluation Results | | 2 | 5 | 10 | 20 | 50 | 80 | |----|-------------------|------------------|------------------|-------------------|-------------------|-------------------| | | | | | | | | | 2 | -2.01 ± 1.56 | 30.30 ± 1.95 | 86.48 ± 2.69 | 192.38 ± 1.88 | 496.58 ± 0.56 | 797.30 ± 0.59 | | 5 | $+4.62 \pm 1.46$ | 41.98 ± 0.77 | 94.60 ± 0.78 | 196.37 ± 0.58 | 497.96 ± 0.40 | 798.07 ± 0.82 | | 10 | -2.93 ± 1.10 | 39.71 ± 1.56 | 95.35 ± 0.21 | 196.95 ± 0.07 | 498.18 ± 0.37 | 798.28 ± 0.76 | | 20 | -11.75 ± 2.09 | 22.05 ± 6.95 | 84.60 ± 7.86 | 194.08 ± 2.48 | 496.80 ± 0.47 | 794.74 ± 2.30 | | 50 | -16.52 ± 1.68 | 6.68 ± 4.03 | 63.39 ± 4.61 | 182.00 ± 2.86 | 494.68 ± 1.00 | 795.90 ± 1.45 | | 80 | -13.96 ± 1.00 | 11.17 ± 4.29 | 62.57 ± 7.94 | 168.27 ± 8.47 | 484.42 ± 4.33 | 789.59 ± 2.09 | Table 1: Mean of Total Rewards for Predator Prey Columns: number of agents in evaluation, rows: number of agents in training. - Models trained with few number of agents have high generalization and transfer capacity for execution with high number of agents. - The reverse is not true. - Models trained with high number of agents have low generalization and transfer capacity for execution with low number of agents. - Choosing number of agents to train from the range [5, 10] would be the better choice for transfer to system with any number of agent count # Predator Prey Environment Evaluation Results For 5 agent evaluation case: Training with 5 agents gives the best evaluation result with 10 agent case following it. Models trained with large number of agents such as 50-80 have very poor performance. # Predator Prey Environment Evaluation Results For 50 agent evaluation case: Training with 10 agents gives the best evaluation results with 5 agent case following it. 50 agent training case has the worst performance. (performance differences are marginal) #### Traffic Junction Evaluation Results | | 3 | 5 | 10 | 15 | 20 | |----|--------------|------------------------------|-----------------------------------|-----------------------------------|-----------------| | 3 | 0.99 ± 0 | 0.92 ± 0.04 | 0.56 ± 0.10 | 0.26 ± 0.14 | 0.23 ± 0.15 | | 5 | 0.99 ± 0 | $\boldsymbol{0.97 \pm 0.01}$ | $\boldsymbol{0.77 \pm 0.09}$ | 0.58 ± 0.16 | 0.58 ± 0.18 | | 10 | 1.00 ± 0 | 0.99 ± 0.00 | 0.95 ± 0.01 | $\textbf{0.84} \pm \textbf{0.07}$ | 0.73 ± 0.09 | | 15 | 1.00 ± 0 | 0.99 ± 0.01 | $\textbf{0.94} \pm \textbf{0.01}$ | 0.85 ± 0.03 | 0.79 ± 0.05 | | 20 | 0.99 ± 0 | 0.99 ± 0.00 | 0.90 ± 0.02 | 0.83 ± 0.04 | 0.79 ± 0.03 | Table 2: Mean of Success Rates for Traffic Junction Columns: number of agents in evaluation, rows:number of agents in training. - Models trained with few number of agents such as 3-5 get evaluation results with much lower success rate compared to the evaluation results of models that are trained with large number of agents such as 15-20. - Models that are trained with 15-20 agents have very high success rate for the evaluation cases where there are 3-5 agents in the environment. - Models trained with few number of agents can not sufficiently transfer for execution with high number of agents. - Environment dynamic is key for transfer. #### Traffic Junction Environment Evaluation Results Models that are trained with 15-20 agents have very high success rate for the evaluation case with 5 agents in the environment # Traffic Junction Environment Evaluation Results Figure 3: 20 Agents Models that are trained with 3-5 agents have very low success rate for the evaluation cases where there are 15-20 agents in the environment. #### References I - [1] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy optimization algorithms, 2017. arXiv: 1707.06347 [cs.LG]. - [2] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, *Graph attention networks*, 2018. arXiv: 1710.10903 [stat.ML]. - [3] S. Li, J. K. Gupta, P. Morales, R. Allen, and M. J. Kochenderfer, Deep implicit coordination graphs for multi-agent reinforcement learning, 2021. arXiv: 2006.11438 [cs.LG].