Evaluating Generalization and Transfer Capacity of Multi-Agent Reinforcement Learning Across Variable Number of Agents

Bengisu Güresti, Nazım Kemal Üre

March 23, 2021

Outline

Introduction

Methods

Table of Contents

Introduction

2 Methods

Overview

Cooperative Multi-Agent Reinforcement Learning

- Common goal
- Global reward
- Local observations

Issues: Non-stationarity, partial observability, restricted communication

Centralized Training Decentralized Execution Paradigm (CTDE)

Overview

Centralized Training Decentralized Execution

Number of agents in training is fixed!

In real world scenarios:

- Number of agents vary
- Unguaranteed communication necessitate decentralized policies

Motivation and Approach

Environment with Variable Number of Agents

As number of agents \uparrow scalability becomes an issue.

We investigate:

- Can learned decentralized policy work for settings with more / less agents?
- Are resulting policies good enough for use in systems with many more agents?

We show:

- Environment is key and a sweet spot exists for the optimal number of agents to train,
- Optimal agent count to train is different than target.
- Transfer across large number of agents can be a more efficient solution to scaling up in some environments

Table of Contents

Introduction

Methods

Algorithm and Network Architecture

Decentralized Policy Network:

Multilayer Perceptrone

Algorithm: PPO (Proximal Policy Optimization) [1]

$$r_t(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}$$

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

Centralized Critic Network

GC Layer: Graph Convolutional Layer with Self Attention Modules o_i : observation of agent i - single time-step partial observation

Algorithm and Network Architecture

Graph Convolutional Layer with Self Attention

Self attention is used - only 1 attention head is used.

Graph Attention Networks [2]

Evaluation Method

- Agent capacity of environment is determined. Number of agents to train and evaluate system performance is determined.
- Por each determined training number, system is trained at that fixed count until performance converges.
- For each trained model, system is evaluated for all determined agent counts
- Results are grouped per number of agents in evaluation. Performances of training for each agent count are analyzed and compared.

Table of Contents

Introduction

2 Methods

Predator Prey Environment

Figure 1: Predator Prey Environment [3] example grid size: 10×10

- Blue: Predators Red: Preys
- Preys act → Predetermined rules + randomness
- Used grid size: 20×20
- Uncoordinated captures penalized
- Max agent capacity determined: 80 predators 80 preys
- Train and Evaluation agent counts determined:

Traffic Junction Environment

Figure 2: Traffic Junction Environment [3]

mode: hard

- Environment mode: hard - 4 junctions
- Goal: reach destination without accident
- Max agent capacity determined : 20 agents
- Train and Evaluation agent counts determined:

Predator Prey Environment Evaluation Results

	2	5	10	20	50	80
2	-2.01 ± 1.56	30.30 ± 1.95	86.48 ± 2.69	192.38 ± 1.88	496.58 ± 0.56	797.30 ± 0.59
5	$+4.62 \pm 1.46$	41.98 ± 0.77	94.60 ± 0.78	196.37 ± 0.58	497.96 ± 0.40	798.07 ± 0.82
10	-2.93 ± 1.10	39.71 ± 1.56	95.35 ± 0.21	196.95 ± 0.07	498.18 ± 0.37	798.28 ± 0.76
20	-11.75 ± 2.09	22.05 ± 6.95	84.60 ± 7.86	194.08 ± 2.48	496.80 ± 0.47	794.74 ± 2.30
50	-16.52 ± 1.68	6.68 ± 4.03	63.39 ± 4.61	182.00 ± 2.86	494.68 ± 1.00	795.90 ± 1.45
80	-13.96 ± 1.00	11.17 ± 4.29	62.57 ± 7.94	168.27 ± 8.47	484.42 ± 4.33	789.59 ± 2.09

Table 1: Mean of Total Rewards for Predator Prey

Columns: number of agents in evaluation, rows: number of agents in training.

- Models trained with few number of agents have high generalization and transfer capacity for execution with high number of agents.
- The reverse is not true.
- Models trained with high number of agents have low generalization and transfer capacity for execution with low number of agents.
- Choosing number of agents to train from the range [5, 10] would be the better choice for transfer to system with any number of agent count

Predator Prey Environment Evaluation Results

For 5 agent evaluation case: Training with 5 agents gives the best evaluation result with 10 agent case following it. Models trained with large number of agents such as 50-80 have very poor performance.

Predator Prey Environment Evaluation Results

For 50 agent evaluation case: Training with 10 agents gives the best evaluation results with 5 agent case following it. 50 agent training case has the worst performance. (performance differences are marginal)

Traffic Junction Evaluation Results

	3	5	10	15	20
3	0.99 ± 0	0.92 ± 0.04	0.56 ± 0.10	0.26 ± 0.14	0.23 ± 0.15
5	0.99 ± 0	$\boldsymbol{0.97 \pm 0.01}$	$\boldsymbol{0.77 \pm 0.09}$	0.58 ± 0.16	0.58 ± 0.18
10	1.00 ± 0	0.99 ± 0.00	0.95 ± 0.01	$\textbf{0.84} \pm \textbf{0.07}$	0.73 ± 0.09
15	1.00 ± 0	0.99 ± 0.01	$\textbf{0.94} \pm \textbf{0.01}$	0.85 ± 0.03	0.79 ± 0.05
20	0.99 ± 0	0.99 ± 0.00	0.90 ± 0.02	0.83 ± 0.04	0.79 ± 0.03

Table 2: Mean of Success Rates for Traffic Junction Columns: number of agents in evaluation, rows:number of agents in training.

- Models trained with few number of agents such as 3-5 get evaluation results with much lower success rate compared to the evaluation results of models that are trained with large number of agents such as 15-20.
- Models that are trained with 15-20 agents have very high success rate for the evaluation cases where there are 3-5 agents in the environment.
- Models trained with few number of agents can not sufficiently transfer for execution with high number of agents.
- Environment dynamic is key for transfer.

Traffic Junction Environment Evaluation Results

Models that are trained with 15-20 agents have very high success rate for the evaluation case with 5 agents in the environment

Traffic Junction Environment Evaluation Results

Figure 3: 20 Agents

Models that are trained with 3-5 agents have very low success rate for the evaluation cases where there are 15-20 agents in the environment.

References I

- [1] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy optimization algorithms, 2017. arXiv: 1707.06347 [cs.LG].
- [2] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, *Graph attention networks*, 2018. arXiv: 1710.10903 [stat.ML].
- [3] S. Li, J. K. Gupta, P. Morales, R. Allen, and M. J. Kochenderfer, Deep implicit coordination graphs for multi-agent reinforcement learning, 2021. arXiv: 2006.11438 [cs.LG].